The effects of sustained drug abuse can manifest in many ways. Loss of memory and reduced cognitive functions are some of the effects that can persist for years. Neurobiologists at the University of California San Diego have now identified a mechanism in the brain that generates drug-induced cognitive impairments.
Scientists in the Department of Neurobiology, School of Biological Sciences, investigated how methamphetamine and phencyclidine (PCP or "angel dust"), which take effect by activating different targets in the brain, induce a similar reduction in cognitive ability. How could the same difficulties in memory emerge in response to drugs that trigger different actions in the brain? The results of this investigation, led by Assistant Project Scientist Marta Pratelli in Professor Nicholas Spitzer's laboratory, are published in Nature Communications . They showed that meth and PCP caused neurons to change the way they communicate through a process known as neurotransmitter switching.
Neurotransmitter switching is a form of brain plasticity, an evolving area of research investigating how the brain changes function and structure in response to experience. In recent years, Spitzer and his colleagues have also identified roles for neurotransmitter switching in autism spectrum disorder , post-traumatic stress disorder and in exercise. Examining the cerebral cortex of mice, the investigators found that meth and PCP each caused a switch from the excitatory neurotransmitter glutamat.