The brain, traditionally considered an immune-privileged organ due to the blood-brain barrier (BBB), has its own sophisticated immune defense system. Microglia, the primary immune cells of the central nervous system (CNS), are crucial for immune surveillance and maintaining brain health. Alongside microglia, astrocytes play a pivotal role in supporting brain functions, including metabolism, neurotransmitter regulation, and maintaining the BBB.

This review critically examines how neuroimmune cells, especially microglia and astrocytes, modulate immune responses and neuroinflammation, especially in neurological disorders like Alzheimer's and Parkinson's diseases. By understanding the mechanisms underlying immune regulation in the brain, new therapeutic strategies can be developed to mitigate neuroinflammation and preserve cognitive functions. The role of neuroimmune cells While the brain's immune privilege shields it from many peripheral immune responses, neuroimmune cells such as microglia and astrocytes are integral to its defense.

Microglia, the brain's resident immune cells, act as sentinels, surveying the brain for damage or infections and initiating responses when necessary. Besides their role in immune defense, microglia are involved in synaptic pruning, a process essential for proper neural circuit development. Astrocytes, on the other hand, support metabolic functions, neurotransmitter regulation, and immune responses by releasing various cytokines.

However, the dysregu.