Researchers at the Centre for Genomic Regulation (CRG) have discovered a treatment which accelerates the production and quality of pluripotent stem cells in mice. This discovery that has the potential to improve disease modeling and drug testing for individuals with two X chromosomes; women, transgender men or men with an extra X chromosome in Klinefelter Syndrome. The findings are published in the journal Science Advances .

The research involves induced pluripotent stem cells (iPSCs), which can become any type of cell in the body, making them a highly versatile and valuable resource in research and medicine. They allow scientists to study diseases in the lab and develop personalized treatments. They also have the potential to replace damaged or diseased tissues.

In humans, creating induced pluripotent stem cells involves reprogramming specialized adult cells like skin cells back into a pluripotent state, work that was recognized with a Nobel Prize to the Japanese Researcher Shinya Yamanaka in the year 2012. However, creating stem cells this way is a laborious task, and few cells achieve true pluripotent status. The researchers discovered that adding interferon gamma (IFNγ) to a culture of mouse neural precursor cells, a type of cell which turns into different types of neurons, cut the time it takes to reprogram iPSCs by one day, saving time and resources.

The finding is surprising because IFNγ is normally known to help the body respond to infections, for example by activat.