Developing advanced drug screening tools is crucial for the advancement of personalized medicine and the creation of more effective treatments. One organ receiving particular attention in this area is the kidney. For example, the kidney's proximal tubules are essential for reabsorbing critical substances from the bloodstream before urine formation.

However, traditional in vitro models have struggled to accurately replicate this, often failing to express key transport proteins like organic anion transporters -- OAT1/3 -- and organic cation transporter 2 -- OCT2. A team at Kyoto University has now developed a human iPS cell-derived kidney organoid-based proximal tubule-on-chip -- OPTECs-on-Chip -- that mimics in vivo renal physiology more closely than ever before. This model exhibits enhanced expression and polarity of essential renal transporters, making it a powerful tool for assessing drug transport and nephrotoxicity.

Our OPTECs-on-Chip demonstrates significant improvements in the expression and functionality of OAT1/3 and OCT2 transporters compared to previous models using immortalized cells." Cheng Ma, Graduate School of Engineering, Kyoto University This microphysiological system -- MPS -- utilizes two widely adopted differentiation protocols to derive kidney organoids, integrating them into a microfluidic system to form a proximal tubule model. This successfully maintains transporter expression, replicating the mechanisms of drug excretion in renal proximal tubules in v.