Researchers at Tel Aviv University have made a fundamental discovery: the NMDA receptor (NMDAR)—long studied primarily for its role in learning and memory—also plays a crucial role in stabilizing brain activity. By setting the "baseline" level for activity in neural networks , the NMDAR helps maintain stable brain function amidst continuous environmental and physiological changes. This discovery may lead to innovative treatments for diseases linked to disrupted neural stability, such as depression, Alzheimer's disease, and epilepsy.

The study was led by Dr. Antonella Ruggiero, Leore Heim, and Dr. Lee Susman from Prof.

Inna Slutsky's lab at the Faculty of Medical and Health Sciences at Tel Aviv University. Prof. Slutsky, who is also affiliated with the Sagol School of Neuroscience, heads the Israeli Society for Neuroscience and directs the Sieratzki Institute for Advances in Neuroscience.

Additional researchers included Dr. Ilana Shapira, Dima Hreaky, and Maxim Katsenelson from the Faculty of Medical and Health Sciences at Tel Aviv University, and Prof. Kobi Rosenblum from the University of Haifa.

The study was published in Neuron . "In recent decades, brain research has mainly focused on processes that allow information encoding, memory, and learning, based on changes in synaptic connections between nerve cells ," says Prof. Slutsky.

"But the brain's fundamental stability, or homeostasis, is essential to support these processes. In our lab, we explore the mechanisms that .