A new study reveals how C210, a curcumin derivative, selectively reactivates Epstein–Barr virus to kill cancer cells without infectious risks, paving the way for safer, targeted cancer therapies. Study: Curcumin derivative C210 induces Epstein–Barr virus lytic cycle and inhibits virion production by disrupting Hsp90 function. Image Credit: Stephanie Frey / Shutterstock A study published in the journal Scientific Reports identifies a novel curcumin derivative that can effectively induce the Epstein–Barr virus (EBV) lytic cycle by disrupting heat shock protein 90 (HSP90).

Background Epstein–Barr virus (EBV) is a tumorigenic virus associated with a range of cancer types, including epithelial cancers and lymphomas. The virus persists in cancer cells in a latent state, and viral reactivation from the latent state to the lytic state leads to cancer cell death. Lytic induction therapy has been developed to selectively kill EBV-positive cancer cells by triggering viral reactivation using histone deacetylase inhibitors, DNA methyltransferase inhibitors, proteasome inhibitors, and other chemical compounds.

However, the major drawbacks of this therapy are relatively low viral reactivation efficacy and the possibility of producing infectious virions that can subsequently trigger viral diseases or promote oncogenesis. Curcumin, a plant-derived polyphenol, is capable of inducing the unfolded protein response (UPR) and triggering the EBV lytic cycle in cancer cells. The UPR is a cel.